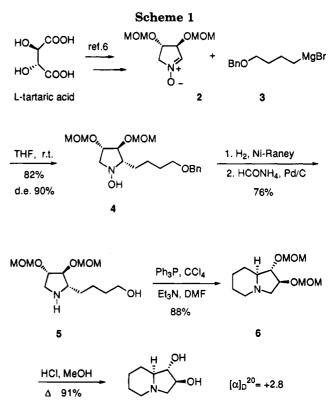
Stereoselective Total Synthesis of (+)-Lentiginosine Using a Chiral Nitrone Intermediate[†]

Riccardo Giovannini, Enrico Marcantoni, and Marino Petrini*

Dipartimento di Scienze Chimiche, Università di Camerino, via S. Agostino, 1, I-62032 Camerino, Italy


Received April 24, 1995

The indolizidine alkaloid lentiginosine (1), extracted from the leaves of *Astragalus lentiginosus*, is the first α -glucosidase inhibitor that has been found to possess only two hydroxyl groups.¹ The biosynthetic origin of 1

is related to other polyhydroxylated indolizidine metabolites, such as swainsonine and castanospermine² that have powerful glycosidase inhibitory and anti-HIV activities. The natural lentiginosine has a reported value $[\alpha]_D$ = -3.3, and for biogenetic reasons, its absolute configuration has been proposed to be (1S, 2S, 8aS).¹ The first synthesis of this alkaloid Yoda et al., realized starting from L-tartaric acid, gave a value of $[\alpha]_D = +0.19$. The apparent discrepancy with the value of natural 1 was attributed to some diastereomeric impurities in the natural product. However, a similar result has recently been obtained by Brandi *et al.* who report a value of $[\alpha]_D$ = +3.2 for the compound prepared starting from Ltartaric acid.⁴ The synthesis of both enantiomers of lentiginosine carried out by Gurjar et al., starting from (R), and (S)-pipecolinic acid,⁵ apparently proves that the natural lentiginosine has the (1R, 2R, 8aR) stereochemistry.

The stereochemical features of 1 suggest the possibility of using nitrone 2 as a precursor for the dihydroxylated portion of the molecule. This nitrone is readily available in five steps from L-tartaric acid⁶ and has been previously used for the synthesis of other polyhydroxylated systems⁷ as well as for lentiginosine itself.⁴ Attack of organometallic reagents on nitrones usually produces α -substituted hydroxylamines that can be further reduced to the amino derivatives.⁸ Following this strategy, we planned to create the third stereogenic center of the incoming indolizidine structure through the addition of a suitable organomagnesium reagent to nitrone 2, followed by a ring

(1S,2S,8aS)-1

closure to the desired bicyclic framework (Scheme 1). Addition of (4-(benzyloxy)butyl)magnesium bromide 3 to nitrone 2 in THF at rt was completely ineffective since the major product formed in this process was 4-(benzyloxy)butanol arising from the oxidation of 3 by the nitrone **2**.⁹ After several trials, a simple reversal in the order of the reagents addition (i.e., nitrone 2 to 2 equiv of reagent **3** in THF) produced in 82% yield a chromatographically separable mixture of diastereomers (95:5) in which the 2,3-trans 4 predominates. This selectivity, compared to that observed in a foregoing procedure,¹⁰ is quite surprising and can be explained by taking into account a possible coordination between the benzyloxy group and the magnesium atom of the reagent that would produce a sixmembered ring structure endowed with a greater steric hindrance compared to a linear framework. The preparation of the amino alcohol 5 in 76% yield is best conducted in a two-stage process involving reduction of hydroxylamine 4 by hydrogenation (1 atm, rt) with Raney Ni catalyst in MeOH, followed by debenzylation using a catalytic transfer hydrogenolysis (HCONH₄, Pd/C).¹¹ Ring closure to the indolizidine 6 has been carried out by intramolecular displacement of the activated OH group by the $Ph_3P/CCl_4/Et_3N$ system in DMF (88% yield).

 $^{^{\}dagger}\textsc{Dedicated}$ to Professor Stephen Hanessian on the occasion of his 60th birthday.

⁽¹⁾ Pastuszak, I.; Molyneux, R. J.; James, L. F.; Elbein, A. D. Biochemistry 1990, 29, 1886.

⁽²⁾ Review: Burgess, K.; Henderson, I. Tetrahedron 1992, 48, 4045.
(3) Yoda, H.; Kitayama, H; Katagiri, T.; Takabe, K. Tetrahedon: Asymmetry 1993, 4, 1455.

⁽⁴⁾ Cordero, F. M.; Cicchi, S.; Goti, A.; Brandi, A. Tetrahedron Lett. 1994, 35, 949.

⁽⁵⁾ Gurjar, M. K.; Gosh, L.; Syamala, M.; Jayasree, V. Tetrahedron Lett. 1994, 35, 8871.

^{(6) (}a) Ballini, R.; Marcantoni, E.; Petrini, M. J. Org. Chem. **1992**, 57, 1316. (b) Marcantoni, E.; Petrini, M.; Polimanti, O. Tetrahedron Lett **1995**, 36, 3561. For an alternative, practical synthesis of similar nitrones bearing different O-protecting groups see: (c) Cicchi, S.; Hold, I.; Brandi, A. J. Org. Chem. **1993**, 58, 5274.

⁽⁷⁾ McCaig, A. E.; Wightman, R. H. Tetrahedron Lett. 1993, 34, 3939.

^{(8) (}a) Basha, A.; Henry, R.; McLaughlin, M. A.; Ratajczyk, J. D.;
Wittenberger, S. J. J. Org. Chem. 1994, 59, 6103. (b) Dondoni, A.;
Merchan, F. L.; Merino, P.; Tejero, T.; Bertolasi, V. J. Chem. Soc.,
Chem. Comm. 1994, 1731. (c) Chang, Z.-Y.; Coates, R. M. J. Org. Chem.
1990, 55, 3464 and 3475. (d) Cowling, M. P.; Jenkins, P. R.; Cooper,
K. J Chem. Soc., Chem. Comm. 1988, 1503.

⁽⁹⁾ Breuer, E. In The Chemistry of Amino, Nitroso and Nitrocompounds; Patai, S., Ed.; Wiley: New York, 1982; p 499.

⁽¹⁰⁾ Reaction of 4-(methoxybenzyl)magnesium chloride with 2 at 0 °C in THF produces a 2:3 mixture of diastereomers in which the 2,3 *cis* one predominates; see ref 6a.

cis one predominates; see ref 6a. (11) Only partial debenzylation (20%) is experienced with Raney Ni catalyst even using elevated pressures (5 atm) or a high amount (50% mol) of catalyst.

Finally, removal of the methoxymethyl groups (HCl, MeOH) gave (1S,2S,8aS)-lentiginosine (1) as a white solid in 16% overall yield from L-tartaric acid . All recorded spectra are in full agreement with those reported for $1^{1,4}$ (see Experimental Section), and the value of $[\alpha]^{20}_{D}$ = +2.8, may lead to the erroneous attribution of the absolute configuration of natural lentiginosine made by Elbein *et al.*¹ It is also evident that only an X-ray structure determination on the natural lentiginosine could give a final answer to this problem.

Experimental Section

¹H NMR spectra were recorded at 300 MHz. Mass spectra were performed using the EI technique. All chemicals used are commercially available (Aldrich Co.). 4-(Benzyloxy)-1-bromobutane was prepared according to the literature.¹² Nitrone 2 was prepared according to a previously described method.⁶ Flash chromatography was performed on Merck silica gel (0.040-0.063 mm).13

(2S.3S.4S)-1-Hvdroxy-2-(4-(benzyloxy)butyl)-3,4-bis-(methoxymethoxy) pyrrolidine (4). To a strirred suspension of magnesium turnings (0.54 g, 22 mol) in THF (10 mL) was added 4-(benzyloxy)-1-bromobutane (4.62 g, 20 mmol) in THF (60 mL) dropwise, mantaining a gentle reflux. The solution was refluxed for a further 30 min after the addition was complete and then cooled to rt. Nitrone 2 (2.04 g, 10 mmol) in THF (40 mL) was then slowly added at rt. After the mixture was stirred for 2 h, saturated aqueous NH₄Cl (20 mL) was poured into the reaction mixture. The aqueous layer was extracted with CH_2 - $Cl_2~(3~\times~30~mL).$ The organic phases were dried over $Na_2SO_4.$ After evaporation of the solvent the crude material was purified by flash chromatography over silica gel (hexane/ethyl acetate/ ethanol (65:30:5)) affording 3.04 g (82%) as an oil: $[\alpha]^{20}D - 27.8$ (c 0.9, CHCl₃); IR (cm⁻¹, neat) 3400; ¹H NMR (CDCl₃) δ 1.45– 1.95 (m, 6H), 2.76-2.81 (m, 1H), 3.10 (dd, 1H, J = 11.2, 5.7 Hz),3.25-3.35 (m, 1H), 3.36 (s, 6H), 3.48 (t, 3H, J = 6.2 Hz), 3.80(d, 1H, J = 5.8 Hz), 4.08 (d, 1H, J = 5.6 Hz), 4.48 (s, 2H), 4.60 -4.77 (m, 4H), 7.00 (bs, 1H), 7.22–7.35 (m, 5H); MS m/z 354 (M⁺ - 16), 292, 262, 204, 190, 91. Anal. Calcd for C₁₉H₃₁NO₆: C, 61.77; H, 8.46; N, 3.79. Found: C, 61.71; H, 8.50; N, 3.76.

(2S,3S,4S)-2-(4-Hydroxybutyl)-3,4-bis(methoxymethoxy)pyrrolidine (5). Hydroxylamine 4 (3.0 g, 8.4 mmol) was dissolved in MeOH (70 mL) and hydrogenated at 1 atm in the presence of Raney Ni W2 (0.40 g) for 18 h at rt. The catalyst was removed by filtration and washed thoroughly with methanol. After evaporation of the solvent the crude product was dissolved in EtOH (80 mL), and HCONH₄ (4.0 g, 32 mmol) and 10% Pd on carbon (1.0 g) were added. The mixture was refluxed for 2 h and then cooled to rt. The catalyst was removed by filtration through a Celite pad and washed with EtOH. After evaporation of the solvent the crude product was purified by flash chromatography on silica gel (CHCl₃/MeOH/30% NH₄OH (80:19:1)) to afford 1.68 g (76%) of a waxy solid: $[\alpha]^{20}$ -8.7 (c 0.7, CHCl₃); IR (cm⁻¹, neat) 3300; ¹H NMR (CDCl₃) δ 1.45-1.75 (m, 6H), 2.60 (bs, 1H), 2.86-2.98 (m, 1H), 3.02 (d, 2H, J = 3.5Hz), 3.35 (s, 3H), 3.45 (s, 3H), 3.56-3.68 (m, 2H), 3.72 (dd, 1H, J = 4.5, 1.3 Hz), 4.04-4.10 (m, 1H), 4.61-4.75 (m, 2H); MS m/z M^+ 263, 202, 190, 114, 114, 85, 70, 56. Anal. Calcd for $C_{12}H_{25}\text{--}$ NO₅: C, 54.73; H, 9.57; N, 5.32. Found: C, 54.78; H, 9.54; N, 5.36

(1S,2S,8aS)-1,2-Bis(methoxymethoxy)indolizidine (6). Amino alcohol 5 (1.6g, 6 mmol) was dissolved in dry DMF (20 mL), and then Ph₃P (3.14 g, 12 mmol), CCl₄ (1.84 g, 1.16 mL, 12 mmol) and Et_3N (1.2 g, 1.66 mL, 12 mmol) were sequentially added. The suspension was strirred for $2\ h,$ and then DMF was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/ethyl acetate/ethanol/ 30% NH₄OH (65:25:9:1)) affording 1.3 g (88%) of a yellow oil: $[\alpha]^{20}_{D}$ -31 (c 1.52, CHCl₃); ¹H NMR (CDCl₃) δ 1.10–1.45 (m, 2H), 1.50-1.68 (m, 2H), 1.70-1.84 (m, 2H), 1.85-2.00 (m, 2H), 2.38 (dd, 1H, J = 10.5, 6.0 Hz), 2.98 (d, 2H, J = 10.5 Hz), 3.35 (s, 6H), 3.73 (dd, 1H, J = 7.8, 2.2 Hz), 3.98 (dd, 1H, J = 5.7, 2.2Hz), 4.62-4.83 (m, 2H); MS m/z M⁺ 245, 214, 200, 184, 156, 128, 124, 97. Anal. Calcd for $\mathrm{C}_{12}\mathrm{H}_{23}\mathrm{NO}_4$: C, 58.75; H, 9.45; N, 5.71. Found: C, 58.70; H, 9.49; N, 5.75.

(1S,2S,8aS)-1,2-Dihydroxyindolizidine ((+)-Lentiginosine, 1). Indolizidine 6 (1,2 g, 4.9 mmol) was dissolved in MeOH (15 mL), and 37% HCl (0.75 mL) was added. The solution was gently refluxed for 3 h, and after the solution was cooled to rt, 30% NH₄OH (15 mL) was added. The solid residue obtained after evaporation of the solvent was purified by flash chromatography over silica gel (CH₂Cl₂/MeOH/30% NH₄OH (80:19:1)) to afford 0.7 g (91%) of a white solid: mp 107 °C (lit.⁴ mp 106– 107 °C); $[\alpha]^{20}_{D}$ +2.8 (c 0.28, MeOH); ¹H NMR (D₂O) δ 1.12–1.80 (m, 5H), 1.81-2.01 (m, 2H), 2.06 (dd, 1H, J = 11.3, 2.9 Hz), 2.60(dd, 1H, J = 11.4, 7.4 Hz), 2.79 (dd, 1H, J = 11.4, 2.0 Hz), 2.90(dd, 1H, J = 11.2, 2.0 Hz), 3.59 (dd, 1H, J = 8.8, 4.0 Hz), 4.03 $(ddd, 1H, J = 7.5, 4.0, 1.9 Hz); {}^{13}C NMR (D_2O) \delta 25.1, 25.9, 29.5,$ 54.7, 62.9, 71.4, 77.8, 85.1; MS m/z M⁺ 157, 140, 97, 84, 69, 55. Anal. Calcd for C₈H₁₅NO₂: C, 61.12; H, 9.62; N, 8.91. Found: C, 61.20; H, 9.57; N, 8.97.

Acknowledgment. The authors wish to thank the Ministero dell'Università e della Ricerca Scientifica e Tecnologica of Italy for the financial assistance.

JO950764A

⁽¹²⁾ Burgstahler, A. W.; Weigel, L. O.; Sanders, M. E.; Shaefer, C.
G.; Bell, W. J.; Vuturo, S. B. J. Org. Chem. 1977, 42, 566.
(13) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.